If diagonals of a parallelogram are $\left( {5\hat i - 4\hat j + 3\hat k} \right)$ and $\left( {3\hat i + 2\hat j - \hat k} \right)$ then its area is
$\sqrt {171} \,unit$
$\sqrt {72} \,unit$
$171\,unit$
$72\,unit$
When $\vec A.\vec B = - |A||B|,$ then
If for two vector $\overrightarrow A $ and $\overrightarrow B $, sum $(\overrightarrow A + \overrightarrow B )$ is perpendicular to the difference $(\overrightarrow A - \overrightarrow B )$. The ratio of their magnitude is
The diagonals of a parallelogram are $2\,\hat i$ and $2\hat j.$What is the area of the parallelogram.........$units$
$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$
If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is